博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
实现R与Hadoop联合作业的三种方法
阅读量:5795 次
发布时间:2019-06-18

本文共 1126 字,大约阅读时间需要 3 分钟。

为了满足用R语言处理pb量级数据的需求,我们需要把它和Hadoop联合起来使用。本文的目的就是阐述实现二者联合作业的不同技术。

方法一:利用Streaming APIs

Hadoop支持一些 Streaming API来将R语言中的函数传入,并在MapReduce模式下运行这些函数。这些Streaming API可以将任意能在map-reduce模式下访问和操作标准I/O接口的R脚本传入Hadoop中。因此,你不需要额外开启一些客户端之类的东西。如下是一个例子:

方法二:使用Rhipe包

Rhipe包允许用户在R中使用MapReduce。在使用这一方法前,要做相应的前期准备工作。R需要被安装在Hadoop集群中的每一个数据节点上,此外每个节点还要安装Protocol Buffers(更多资料请参考 http://wiki.apache.org/hadoop/ProtocolBuffers),Rhipe也需要在每个节点上都可以被使用。

下面是在R中利用Rhipe应用MapReduce框架的范例:

方法三:使用RHadoop

RHadoop是Recolution Analytics下的一个开源库,与Rhipe类似,它的功能也是在MapReduce模式下执行R函数。后续列举的都是该库中的一些包。plyrmr 包可以在Hadoop中对大数据集进行一些常用的数据整理操作。rmr包提供了一些让R和Hadoop联合作业的函数。rdfs包提供了一些函数来连接R 和分布式文件系统(HDFS)。rhbase包中的函数则能连接R和HBase。

下面这个例子中,我们会演示如何使用rmr包中的一些函数来让R与Hadoop联合作业。

方法总结

总的说来,上述三种方法都能很容易地实现R与Hadoop的联合作业,这样一来R就拥有了在分布式文件系统(HDFS)上处理大数据的能力。但同时,这三种方法也各有利弊。

关键结论:

1、使用Streaming APIs最为简单,它的安装和设置都很方便。Rhipe和RHadoop都需要对R进行一些设置,并且也需要Hadoop集群上一些包的支持。但在执行函数方面,Streaming APIs 需要将函数依次map和reduce,而Rhipe和RHadoop允许开发者在R函数中定义并调用MapReduce函数。

2、与Rhipe和RHadoop不同,使用Streamings APIs也不需要客户端。

3、除此之外,我们也可以使用Apache Mahout,Apache Hive,Segue框架与其他来自Revolution Analytics的商业版R来实现大规模机器学习。

本文作者:雪晴数据网

来源:51CTO

转载地址:http://gjdfx.baihongyu.com/

你可能感兴趣的文章
C#开发微信门户及应用(12)-使用语音处理
查看>>
[分享]Ubuntu12.04安装基础教程(图文)
查看>>
数据集成之主数据管理(一)基础概念篇
查看>>
[Vim] 搜索模式(正则表达式)
查看>>
#HTTP协议学习# (二)基本认证
查看>>
Android开发之线性布局详解(布局权重)
查看>>
WCF
查看>>
remoting方式
查看>>
django 目录结构修改
查看>>
win8 关闭防火墙
查看>>
OAF_文件系列2_实现OAF导出CSV格式文件ExportButton(案例)
查看>>
Android实例-录音与回放(播放MP3)(XE8+小米2)
查看>>
构建自己的PHP框架--抽象Controller的基类
查看>>
CSS——(2)与标准流盒模型
查看>>
MYSQL 基本SQL语句
查看>>
Codeforces 451E Devu and Flowers(容斥原理)
查看>>
P2P行业专业术语(最全)
查看>>
C#中的Marshal
查看>>
网站发的文章有收录 但是没有排名怎么处理
查看>>
linux命令:ls
查看>>